This week

1. Section 12.4: the cross product
2. Section 12.5: lines and planes in space
The cross product – introduction

Definition

Let \(u = (u_1, u_2, u_3) \) and \(v = (v_1, v_2, v_3) \) be two vectors in \(\mathbb{R}^3 \). The cross product \(u \) and \(v \) is defined as

\[
\mathbf{u} \times \mathbf{v} = (u_2 v_3 - u_3 v_2, \ u_3 v_1 - u_1 v_3, \ u_1 v_2 - u_2 v_1) .
\]

- The Dutch name for the cross product is *uitproduct* or *uitwendig product*.
- The cross product can be computed using this trick:

\[
\mathbf{u} \begin{pmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{pmatrix} \times \mathbf{v} = \begin{pmatrix} u_1 \times v_2 & u_2 \times v_3 & u_3 \times v_1 \\ u_1 \times v_3 & u_2 \times v_1 & u_3 \times v_2 \end{pmatrix}
\]

Laws and properties

Theorem

For all \(u, v, w \in \mathbb{R}^n \) and \(r, s \in \mathbb{R} \) we have

1. \((ru) \times (sv) = (rs)(u \times v) \)
2. \(u \times (v + w) = u \times v + u \times w \)
3. \(u \times v = -(v \times u) \)
4. \((v + w) \times u = v \times u + w \times u \)
5. \(0 \times u = u \times 0 = 0 \)
6. \(u \times (v \times w) = (u \cdot w)v - (u \cdot v)w \)

- Property 4 can be proved with properties 2 and 3.
Theorem

Let \(\mathbf{u} \) and \(\mathbf{v} \) be two vectors. If \(\theta \) is the acute positive angle between \(\mathbf{u} \) and \(\mathbf{v} \), then

\[
|\mathbf{u} \times \mathbf{v}| = |\mathbf{u}| |\mathbf{v}| \sin \theta.
\]

- Acute means: \(\theta \leq \pi \), hence \(\sin \theta \geq 0 \).

The cross product – geometry

Theorem

For all vectors \(\mathbf{u} \) and \(\mathbf{v} \) we have \(\mathbf{u} \times \mathbf{v} \perp \mathbf{u} \) and \(\mathbf{u} \times \mathbf{v} \perp \mathbf{v} \).

- Vector \(\mathbf{u} \times \mathbf{v} \) is perpendicular to the plane through \(\mathbf{u} \) and \(\mathbf{v} \).
- The length of \(\mathbf{u} \times \mathbf{v} \) is \(|\mathbf{u}| |\mathbf{v}| \sin \theta \).
- The right-hand rule determines the direction of \(\mathbf{u} \times \mathbf{v} \).
The area of a parallelogram

Theorem

Let \(u \in \mathbb{R}^3 \) and \(v \in \mathbb{R}^3 \) be the edges of a parallelogram \(P \). Then the area of \(P \) is equal to \(|u \times v| \).

![Parallelogram diagram]

- Observe that \(\sin \theta = \frac{h}{|v|} \), so \(h = |v| \sin \theta \).
- The area of \(P \) is
 \[
 |u| h = |u| |v| \sin \theta = |u \times v|.
 \]

Example

Find the area of the triangle \(D \) with vertices \(P = (1,-1,0) \), \(Q = (2,1,-1) \) and \(R = (-1,1,2) \).

- The triangle is one half of a parallelogram with edges \(\overrightarrow{PQ} \) and \(\overrightarrow{PR} \), hence the area of \(D \) is
 \[
 \frac{1}{2} \left| \overrightarrow{PQ} \times \overrightarrow{PR} \right|.
 \]
- For the cross product we have
 \[
 \overrightarrow{PQ} \times \overrightarrow{PR} = (1,2,-1) \times (-2,2,2) = (6,0,6).
 \]
- For the area we have
 \[
 \text{area}(D) = \frac{1}{2} \left| \overrightarrow{PQ} \times \overrightarrow{PR} \right| = \frac{1}{2} \sqrt{36 + 36} = 3\sqrt{2}.
 \]
The area of a parallelogram in \mathbb{R}^2

Theorem

Let P be the parallelogram spanned by $\mathbf{u} = (u_1, u_2)$ and $\mathbf{v} = (v_1, v_2)$. Then $\text{area}(P) = |u_1v_2 - u_2v_1|$.

By appending a zero to the vectors \mathbf{u} and \mathbf{v} we can embed P in \mathbb{R}^3:

- $\mathbf{u}' = (u_1, u_2, 0)$ and $\mathbf{v}' = (v_1, v_2, 0)$
- The area of P is $\text{area } P = |\mathbf{u}' \times \mathbf{v}'| = |(0, 0, u_1v_2 - u_2v_1)| = |u_1v_2 - u_2v_1|$.

Distance to a line

Problem

Let S be a point in space and let ℓ be a line through P with direction vector \mathbf{v}. Find the distance d of S to ℓ.

Method 1: Use the projection of $\mathbf{u} = \overrightarrow{PS}$ on ℓ:

Works in \mathbb{R}^n for every n

$$d = |\mathbf{h}| = \left| \mathbf{u} - \frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}} \mathbf{v} \right|$$

Method 2: Use the cross product:

Only works in \mathbb{R}^3

$$d = |\mathbf{u}| \sin \theta = \frac{|\mathbf{u} \times \mathbf{v}|}{|\mathbf{v}|}.$$
Example

Find the distance of \(S = (1, 1, 5) \) *to the line*

\[\ell : \quad x = 1 + t, \quad y = 3 - t, \quad z = 2t. \]

Using method 2:

- Define \(P = (1, 3, 0) \), \(\overrightarrow{OP} = (1, 3, 0) \) and \(\mathbf{v} = (1, -1, 2) \), then \(\ell : \mathbf{p} + t \mathbf{v} \ (t \in \mathbb{R}) \).
- Define \(\mathbf{u} = \overrightarrow{PS} = (1, 1, 5) - (1, 3, 0) = (0, -2, 5) \).
- \(\mathbf{v} \cdot \mathbf{v} = 1^2 + (-1)^2 + 2^2 = 6 \), hence \(|\mathbf{v}| = \sqrt{6} \).
- \(\mathbf{u} \times \mathbf{v} = (0, -2, 5) \times (1, -1, 2) = (1, 5, 2) \).
- The distance is
 \[
 d = \frac{|\mathbf{u} \times \mathbf{v}|}{|\mathbf{v}|} = \frac{\sqrt{1^2 + 5^2 + 2^2}}{\sqrt{6}} = \frac{\sqrt{30}}{\sqrt{6}} = \sqrt{5}.
 \]
Definition

A **parametrisation** of the plane M is a function of the form

$$p + sv + tw, \quad s, t \in \mathbb{R}$$

- The vector p is called a **support vector** and the vectors v and w are called **direction vectors**.

Example

Find a parametrisation of the plane through the points $A = (0, 0, 1)$, $B = (2, 0, 0)$ and $C = (0, 3, 0)$.

- Choose support vector $a = \overrightarrow{OA} = (0, 0, 1)$.
- Choose direction vectors
 $$v = \overrightarrow{AB} = (2, 0, -1)$$
 and
 $$w = \overrightarrow{AC} = (0, 3, -1)$$
- A parametrisation then is
 $$r(s, t) = a + sv + tw$$
 $$= (0, 0, 1) + s(2, 0, -1) + t(0, 3, -1)$$
 $$= (2s, 3t, 1 - s - t), \quad s, t \in \mathbb{R}.$$
- Check: $A = r(0, 0)$, $B = r(1, 0)$ en $C = r(0, 1)$.
Problem

Find an equation of a plane M given by a parametrisation

$$p + sv + tw,$$

where P is a point of M and $p = \overrightarrow{OP}$.

Method 1: Three-point method: observe that P, $Q = p + v$ and $R = p + w$ are three points of M. This gives three equations involving x, y, z, s and t. Eliminate s and t to find one equation in x, y and z.

Method 2: Compute a normal vector $n = v \times w$ of M, then

$$M: n \cdot (x - p) = 0.$$

Example

Find an equation of the plane through the points $A = (0, 0, 1)$, $B = (2, 0, 0)$ and $C = (0, 3, 0)$.

- A parametrisation of M is

 $$p + sv + tw = (0, 0, 1) + s(2, 0, -1) + t(0, 3, -1)$$

- Find a normal vector:

 $$(2, 0, -1), 2, 0$$

 $$n = v \times w = \begin{vmatrix} i & j & k \\ 2 & 0 & -1 \\ 0 & 3 & -1 \end{vmatrix} = (3, 2, 6).$$

- The normal equation of M is

 $$n \cdot (x - p) = 0$$

 $$(3, 2, 6) \cdot ((x, y, z) - (0, 0, 1)) = 0$$

 $$3x + 2y + 6(z - 1) = 0$$

 $$3x + 2y + 6z = 6$$
Theorem

Two different non-parallel planes intersect in a line.

- Non-parallel means: the normals of both planes have different directions.
- If the planes are called M and N, then the intersection line is denoted as follows:
 \[\ell = M \cap N. \]
- A line in space can be regarded as the intersection line of two planes, in other words: it is the solution of a system of two equations:
 \[
 \ell: \begin{cases}
 ax + by + cz = d, \\
 px + qy + rz = s.
 \end{cases}
 \]

Example

Find a parametrisation of the intersection line of the planes $3x - 6y - 2z = 15$ and $2x + y - 2z = 5$.

Method 1:

- From the first equation follows $x = 2y + \frac{2}{3}z + 5$.
- Substitution in the second equation gives
 \[2\left(2y + \frac{2}{3}z + 5\right) + y - 2z = 5, \]
 and after simplification we have
 \[z = \frac{15}{2}y + \frac{15}{2}. \]
- Choose one of the unknowns as parameter. For example, let $y = t$, then
 \[z = \frac{15}{2}t + \frac{15}{2} \quad \text{and} \quad x = 2t + \frac{2}{3}\left(\frac{15}{2}t + \frac{15}{2}\right) + 5 = 7t + 10. \]
- A parametrisation of the intersection line is
 \[\mathbf{r}(t) = \left(7t + 10, t, \frac{15}{2}t + \frac{15}{2}\right) = \left(10, 0, \frac{15}{2}\right) + t\left(7, 1, \frac{15}{2}\right), \quad t \in \mathbb{R}. \]
Method 2:

- The normal vectors \mathbf{n}_1 and \mathbf{n}_2 are perpendicular to the intersection line, so the cross product of \mathbf{n}_1 and \mathbf{n}_2 is a direction vector of the intersection line.
- Extract the normal vectors from the equations:
 - $M_1: 3x - 6y - 2z = 15$, $\rightarrow \mathbf{n}_1 = (3, -6, -2)$,
 - $M_2: 2x + y - 2z = 5$, $\rightarrow \mathbf{n}_2 = (2, 1, -2)$,

 hence $\mathbf{v} = \mathbf{n}_1 \times \mathbf{n}_2 = (14, 2, 15)$.

A support vector can be found by choosing a value for x, y or z, and then solving both equations for x and y. For example, choose $y = 0$:

- $3x - 2z = 15$,
- $2x - 2z = 5$.

Subtracting both equations gives $x = 10$, and therefore $z = \frac{15}{2}$.

A support vector is $\mathbf{p} = (10, 0, \frac{15}{2})$.

A parametrisation of the intersection line is

$$\mathbf{p} + t\mathbf{v} = \left(10, 0, \frac{15}{2}\right) + t \left(14, 2, 15\right)$$

$$= \left(10, 0, \frac{15}{2}\right) + 2t \left(7, 1, \frac{15}{2}\right).$$
Assignment: IMM2 - Tutorial 8.2